Glutamate transport driven by an electrochemical gradient of sodium ions in Escherichia coli.

نویسندگان

  • T Tsuchiya
  • S M Hasan
  • J Raven
چکیده

The role of Na+ in glutamate transport was studied in Escherichia coli B, strain 29-78, which possesses a very high activity of glutamate transport (L. Frank and I. Hopkins, J. Bacteriol., 1969). Energy-depleted cells were exposed to radioactive glutamate in the presence of a sodium gradient, a membrane potential, or both. One hundred- to 200-fold accumulation of the amino acid was attained in the presence of both electrical and chemical driving forces for the sodium ion. Somewhat lower accumulation values were obtained when either chemical or electrical driving forces were applied separately. A chemical driving force was produced by the addition of external Na+ to Na+-free cells. A membrane potential was established by a diffusion potential either of H+ in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone or of SCN-. These results support the hypothesis of a Na+-glutamate cotransport. Na+-driven glutamate transport was also observed in wild-type E. coli B but not in a strain of K-12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients.

Membrane vesicles prepared from Escherichia coli B/r grown on glutamate as a sole source of carbon and energy require sodium for glutamate accumulation when energized by D-lactate oxidation. Glutamate uptake can also be driven by a prearranged sodium gradient (out to in) in the absence of an energy source or a protonmotive force. Sodium ions are exchanged rapidly in respiring vesicles and the s...

متن کامل

Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus.

An affinity tag consisting of six adjacent histidine residues followed by an enterokinase cleavage site was genetically engineered at the N-terminus of the glutamate transport protein GltT of the thermophilic bacterium Bacillus stearothermophilus. The fusion protein was expressed in Escherichia coli and shown to transport glutamate. The highest levels of expression were observed in E. coli stra...

متن کامل

Characterization and functional expression in Escherichia coli of the sodium/proton/glutamate symport proteins of Bacillus stearothermophilus and Bacillus caldotenax.

The genes encoding the Na+/H+/L-glutamate symport proteins of the thermophilic organisms Bacillus stearothermophilus (gltTBs) and Bacillus caldotenax (gltTBc) were cloned by complementation of Escherichia coli JC5412 for growth on glutamate as sole source of carbon, energy and nitrogen. The nucleotide sequences of the gltTBs and gltTBc genes were determined. In both cases the translated sequenc...

متن کامل

Solubilization and functional reconstitution of the proline transport system of Escherichia coli.

The membrane carrier for L-proline (product of the putP gene) of Escherichia coli K12 was solubilized and functionally reconstituted with E. coli phospholipid by the cholate dilution method. The counterflow activity of the reconstituted system was studied by preloading the proteoliposomes with either L-proline or the proline analogues: L-azetidine-2-carboxylate or 3,4-dehydro-L-proline. The dil...

متن کامل

Measurement of intracellular sodium concentration and sodium transport in Escherichia coli by 23Na nuclear magnetic resonance.

Escherichia coli is known to actively extrude sodium ions, but little is known concerning the concentration gradient it can develop. We report here simultaneous measurements, by 23Na NMR, of intracellular and extracellular Na+ concentrations of E. coli cells before and after energization. 23Na spectra in the presence of a paramagnetic shift reagent (dysprosium tripolyphosphate) consisted of two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 131 3  شماره 

صفحات  -

تاریخ انتشار 1977